25 research outputs found

    Towards Evidence Based M-Health Application Design in Cancer Patient Healthy Lifestyle Interventions

    Get PDF
    Cancer is one of the most prevalent diseases in Europe and the world. Significant correlations between dietary habits and cancer incidence and mortality have been confirmed by the literature. Physical activity habits are also directly implicated in the incidence of cancer. Lifestyle behaviour change may be benefited by using mobile technology to deliver health behaviour interventions. M-Health offers a promising cost-efficient approach to deliver en-masse interventions. Smartphone apps with constructs such as gamification and personalized have shown potential for helping individuals lose weight and maintain healthy lifestyle habits. However, evidence-based content and theory-based strategies have not been incorporated by those apps systematically yet. The aim of the current work is to put the foundations for a methodologically rigorous exploration of wellness/health intervention literature/app landscape towards detailed design specifications for connected health m-apps. In this context, both the overall work plan is described as well as the details for the significant steps of application space and literature space review. Both strategies for research and initial outcomes of it are presented. The expected evidence based design process for patient centered health and wellness interventions is going to be the primary input in the implementation process of upcoming patient centered health/wellness m-health interventions.ENJECT COST-STSM-ECOST-STSM-TD1405-220216-07045

    Eliciting Co-Creation Best Practices of Virtual Reality Reusable e-Resources

    Get PDF
    Immersive experiential technologies find fertile grounds to grow and support healthcare education. Virtual, Augmented, or Mixed reality (VR/AR/MR) have proven to be impactful in both the educational and the affective state of the healthcare student’s increasing engagement. However, there is a lack of guidance for healthcare stakeholders on developing and integrating virtual reality resources into healthcare training. Thus, the authors applied Bardach’s Eightfold Policy Analysis Framework to critically evaluate existing protocols to determine if they are inconsistent, ineffective, or result in uncertain outcomes, following systematic pathways from concepts to decision-making. Co-creative VR resource development resulted as the preferred method. Best practices for co-creating VR Reusable e-Resources identified co-creation as an effective pathway to the prolific use of immersive media in healthcare education. Co-creation should be considered in conjunction with a training framework to enhance educational quality. Iterative cycles engaging all stakeholders enhance educational quality, while co-creation is central to the quality assurance process both for technical and topical fidelity, and tailoring resources to learners’ needs. Co-creation itself is seen as a bespoke learning modality. This paper provides the first body of evidence for co-creative VR resource development as a valid and strengthening method for healthcare immersive content development. Despite prior research supporting co-creation in immersive resource development, there were no established guidelines for best practices

    Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study

    Get PDF
    Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Photocurrent Stimulation in Organic Photodiodes via Electrically Integrated Photon Energy Up-Conversion Organic Layers

    No full text
    The photophysical process of low photon energy up-conversion via triplet-triplet annihilation (TTA-UC) describes the capability of a multicomponent system to exhibit photoluminescence (PL) at wavelengths shorter than the wavelength used for its photoexcitation. Systems exhibiting TTA-UC luminescence are particularly attractive to a broad range of light management applications including sensitization of photodiode devices, activation of photocatalytic systems and photo-stimulation of optogenetic platforms. Particularly for the area of organic solar cell (OSC) and organic photodetector (OPD) devices, TTA-UC offers the possibility to generate photocurrent when low energy photons are interacting with the device, which would be otherwise lost by their transmission through the device photoactive layer. However, to integrate a TTA-UC layer both by optical and electrical means into an organic photodiode device architecture remains challenging. Here we present a methodology that enables the generation of TTA-UC induced photocurrent in OPD devices functionalized with an electrically and optically integrated TTA-UC layer. An interlayer of the organometallic sensitizer of (2, 3, 7, 8, 12, 13, 17, 18-octaethyl-porphyrinato) PtII (PtOEP) is used for extending the absorption profile of a planar OPD heterojunction to the red, thereby allowing for the capture of photons with energies lower than the absorption energy of the heterojunction. Planar OPD heterojunctions are used comprising the 9,10 diphenyl anthracene (DPA) electron donor interfaced with a C60 fullerene acceptor. In respect to the DPA/C60 reference system, a 7-fold enhancement is achieved in the photocurrent of the PtOEP/DPA/C60 device when photons of 532 nm are used. In addition, the electrical integration of the PtOEP interlayer in the device structure facilitates an optimum hole extraction thereby generating an open circuit voltage of 500 mV. Time-integrated PL spectroscopy on the fabricated devices confirms the occurrence of the TTA-UC process that manifests in detection of the characteristic DPA luminescence upon laser excitation at 532 nm. The applicability of our methodology to a wider set of materials is demonstrated by replacing the C60 acceptor with bis(8-hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum (BAlq), a high-energy gap electron acceptor. Based on these findings we demonstrate TTA-UC sensitized PtOEP/DPA/C60 OPD heterojunctions with responsivity (R), noise-equivalent power (NEP) and specific detectivity (D*) values of R= 610 μA/W, NEP= 40 pW and D*= 5.8 × 109 Jones at 550 nm. We will discuss on the potential utilization of these devices in all-optically ternary logic circuits and TTA-UC sensitized OSC platforms. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: EXCELLENCE/1216/0010)

    Using multimedia as an instructional tool in physical education

    No full text
    Etude des effets de trois méthodes d'enseignement (traditionnelle, multimedia et combinée) sur l'apprentissage de connaissances, d'habiletés et de l'attitude des étudiants envers la méthode utilisée
    corecore